題 目:Robust Variable Selection via Nonconcave Penalties with a Upgraded Parsimonious Dynamic Covariance Modeling
主講人:許林副教授
時 間:2022年12月6日(周二)13:30-14:30
地 點:6號學院樓510會議室
主辦單位:新葡萄8883官網AMG 浙江省2011“數據科學與大數據分析協同創新中心”
摘要:
We present a new parsimonious method for joint mean-covariance modeling based on M-estimation and nonconcave penalty. In this paper, the robustness of the proposed model was aimed to address the issue when the working matrix is misspecified and a spot of outliers exist in the dataset. The proposed approach outperforms the traditional method in robustness and variable selections for longitudinal data analysis, particularly when the dataset contains a spot of outliers. The simulation results back up the theoretical findings, and the methodology is further illustrated via an analysis of a real progesterone data example.
主講人簡介:
許林,博士畢業于東北師范大學數學與統計學院,并于2016-2018年在加州大學河濱分校統計系進行博士后研究。現任新葡萄8883官網AMG應用統計系副教授,碩士研究生導師;專業研究方向為:縱向數據分析;穩健估計;因果推斷;經驗似然理論等。主持完成省部級科學基金兩項。近幾年在JMVA、SII、CSDA等統計學雜志發表論文10篇。
歡迎各位老師和同學踴躍參加!