一、基本信息
李好好,女,新葡萄8883官網AMG副教授,大數據統計方法與應用專業碩士生導師。2014年畢業于浙江大學運籌學與控制論專業,理學博士。擔任美國數學評論評論員、浙江省自然科學基金評審專家、廣東省高層次人材評審專家和中國運籌學會會員。
研究領域:運籌與優化,包括線性規劃、非線性規劃、組合優化、在線學習與在線優化。
主講課程:《高等數學》《線性代數》《運籌學》《組合優化》等。
郵箱:hhli@zufe.edu.cn。
二、課題研究
[1] “區間線性系統的Farkas型定理研究”(項目編號:11701506),國家自然科學基金青年科學基金項目,2018.01-2020.12,主持;
[2] “兩類保密排序問題的算法研究”(項目編號:11526184),國家自然科學基金數學天元基金項目,2016.01-2016.12,主持;
[3] “極大代數上一般區間線性系統解集特征研究”(項目編號:LY21A010021),浙江省自然科學基金一般面上項目,2021.01-2023.12,主持;
[4] “基于路徑設計的居民霧霾健康成本測度及監管研究”(項目編號:16CTJ010),國家社會科學基金青年項目,2016.06-2019.6,3/5;
[5] “分散決策模式下的排序問題研究”(項目編號:11271324),國家自然科學基金面上項目,2013.01-2016.12,6/10;
[6] “《運籌學》線上線下混合式課程建設,浙江財經大學教學項目,2022.5-2024.5,2/3.
三、主要論文
[1] Checking weak and strong optimality of the solution to interval convex quadratic programming in a general form, Optimization Letters, 2024.1, 18:339-364, SCI.
[2] 區間線性系統的區間解, 《系統科學與數學》, 2021.12, 41(12): 3395-3404, 北大核心.
[3] EA solutions and EA solvability to general interval linear systems, Linear and Multilinear Algebra, 2021.11, 69(15): 2865–2881, SCI.
[4] Weak optimal inverse problems of interval linear programming based on KKT conditions, Applied Mathematics-A Journal of Chinese Universities SERIES B, 2021.9, 36(3): 462-474, SCI.
[5] AE solutions to interval linear systems over max-plus algebra, Linear Algebra and its Applications, 2019.10, 578: 297-313, SCI.
[6] 有服務等級排序博弈問題的混合協調機制研究, 《系統科學與數學》, 2019.3, 39(3): 396-408, 北大核心.
[7] AE solutions to two-sided interval linear systems over max-plus algebra, Journal of Inequalities and Application, 2018, 291: 1-13, SCI.
[8] Farkas-type conditions of general interval linear systems for AE solvability, Linear Algebra and its Applications, 2017, 514: 208-221, SCI.
[9] Some properties of the lower bound of optimal values in interval convex quadratic programming, Optimization Letters, 2017, 11(7): 1443–1458. SCI.
[10] Some results on the upper bound of optimal values in interval convex quadratic programming, Journal of Computational and Applied Mathematics, 2016, 302: 38-49. SCI.
[11] Checking weak optimality of the solution to interval linear program in the general form, Optimization Letters, 2016, 10: 77-88, SCI.
[12] Necessary and sufficient conditions for unified optimality of interval linear program in the general form, Linear Algebra and its Applications, 2015, 484: 154-174, SCI.
[13] Farkas-type theorems for interval linear systems, Linear & Multilinear Algebra, 2015, 63: 1390–1400, SCI.
[14] Solvability and feasibility of interval linear equations and inequalities, Linear Algebra and its Applications, .2014, 463: 78–94, SCI.
[15] An interesting characteristic of phase-1 of dual–primal algorithm for linear programming, Optimization Methods and Software, 2014, 29(3): 497-502, SCI.
四、獲獎榮譽
[1] 浙江省第十三屆高校青年教師教學競賽獲二等獎.