李紅霞博士,現任新葡萄8883官網AMG副教授,碩士生導師。主要研究領域為微分方程數值解解法及應用,金融數學中的模型計算和模擬。浙江省青年人才,校中青年骨干教師
? 教育與工作經歷:
2005年09月至今,浙江財經大學任教
2002年09月-2005年09月,上海大學計算數學專業(yè)學習,獲博士學位,師從茅德康教授。
1999年09月-2002年09月,上海大學計算數學專業(yè)學習,,獲碩士學位,師從茅德康教授。
1995年09月-1999年09月,河北師范大學數學教育專業(yè)學習,獲學士學位。
2012年08月-2013年09月,美國布朗大學應用數學專業(yè),訪問學者,合作導師舒其望教授。
? 科研項目:
1) “二維流體數值模擬中雙曲守恒型方程(組)的熵耗散格式研究”(N 11302188)2014.1-20國家自然科學基金, 23萬元(立項金額), 2014.01-2016.12(結項),主持;
2) “半無限變分不等式的牛頓型迭代算法研究” (N.10871168)國家自認科學基金,24萬,2009.1-2011.12 (結題),3/5
3) 國家留學基金資助(編號:2011833239, 錄取文號:留金法[2011]5025號), 留學期限12個月
? 論文、著作:
1. Li Hongxia, Entropy dissipation scheme and minimums-increase-and-maximums-decrease slope limiter, Int. J. Numer. Meth. Fluids 2012; 70(10), 1221–1243
2. Li Hongxia, The Numerical Approximation of the Linear Advection Equation in One Space Dimension, JOURNAL OF COMPUTERS, VOL. 7, NO. 1, JANUARY 2012, 272-277
3. Li Hongxia, One explicit scheme for the linear heat conduction equation and the numerical approximation, JOURNAL OF COMPUTERS, VOL. 7, NO. 3, March, 2012, 743-748
4. Li Hongxia, The Numerical Analysis of the Schemes of 1-Order Ordinary Differencial Equations, Research Journal of Applied Sciences, Engineering and Technology 4(2), 2012, 141-144
5. Li hongxia, Numerical Analysis of the Lotka-Volterra Mode, The 2nd intern -ational conference on multimedia technology (IEEE catalog number: CFP1153K-PRT)(ICMT2011), 3579 – 3582
6. Li Hongxia ,An Improvement design of the entropy dissipator of the entropy dissipating scheme for scalar conservation law ,J. Inform. Comput. Sci, 7(8) (2010), 1747-1751
7. Li Hongxia; The Lax-Wendroff Theorem of Entropy Dissipation Method for Scalar Conservation Laws in One Space Dimension, Journal of Mathematics Research 1(1)(2009), 98-101
8. Li Hongxia, Wang Zhigang, Mao Dekang; Numerically Neither Dissipative Nor Compressive Scheme for Linear Advection Equation and Its Application to the Euler System,Journal of Scientific Computing, Volume 36, Number 3,2008, P285-331;
9. Li Hongxia, The Improvement of the Entropy Dissipation Scheme. J. Inform. Comput. Sci, 3(3)(2006), 471-475
10. H. Li and D. Mao, Further development of an entropy diassipating method for scalar conservation laws. J. Inform. Comput. Sci, 1(3)(2004), 147-151